Confluent Cauchy and Cauchy-Vandermonde matrices
نویسندگان
چکیده
منابع مشابه
The Zrank Conjecture and Restricted Cauchy Matrices
Abstract. The rank of a skew partition λ/μ, denoted rank(λ/μ), is the smallest number r such that λ/μ is a disjoint union of r border strips. Let sλ/μ(1 ) denote the skew Schur function sλ/μ evaluated at x1 = · · · = xt = 1, xi = 0 for i > t. The zrank of λ/μ, denoted zrank(λ/μ), is the exponent of the largest power of t dividing sλ/μ(1 ). Stanley conjectured that rank(λ/μ) = zrank(λ/μ). We sho...
متن کاملA Superfast Algorithm for Confluent Rational Tangential Interpolation Problem via Matrix-vector Multiplication for Confluent Cauchy-like Matrices∗
Various problems in pure and applied mathematics and engineering can be reformulated as linear algebra problems involving dense structured matrices. The structure of these dense matrices is understood in the sense that their n2 entries can be completeley described by a smaller number O(n) of parameters. Manipulating directly on these parameters allows us to design efficient fast algorithms. One...
متن کاملFast QR factorization of Cauchy-like matrices
n this paper we present two fast numerical methods for computing the QR factorization of a Cauchy-like matrix C with data points lying on the real axis or on the unit circle in the complex plane. It is shown that the rows of the Q-factor of C give the eigenvectors of a rank structured matrix partially determined by some prescribed spectral data. This property establishes a basic connection betw...
متن کاملOn MDS codes via Cauchy matrices
The special form of Cauchy matrices is used to obtain a tighter bound for the validity region of the MDS Conjecture and a new compact characterization of generalized Reed-Solomon codes. The latter is further used to obtain constructions and some nonexistence results of long [2k, k] double-circulant MDS codes. This work was presented in part at the IEEE International Symposium on Information The...
متن کاملFast approximate computations with Cauchy matrices and polynomials
Multipoint polynomial evaluation and interpolation are fundamental for modern algebraic and numerical computing. The known algorithms solve both problems over any field of constants in nearly linear arithmetic time, but the cost grew to quadratic for numerical solution. We fix this discrepancy: our new numerical algorithms run in nearly linear arithmetic time. At first we restate our goals as t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1997
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(96)00200-5